Что такое Полнота

Значение слова Полнота по Ефремовой:

Полнота — 1. Наполненность, достаточное наличие чего-л.
2. Полная мера, полный состав, предельное количество. // Исчерпанность, обстоятельность. // Насыщенность, содержательность.
3. перен. Высшая степень чего-л.
4. Тучность, толщина тела.

Значение слова Полнота по Ожегову:

Полнота — Тучность, упитанность


Полнота Единица измерения внутри одного размера (одежды, обуви)


Полнота Наличие чего-нибудь в достаточнойстепени, высшая степень насыщенности чем-нибудь

Полнота в Энциклопедическом словаре:

Полнота — в логике и математике — достаточность выразительных илидедуктивных средств какой-либо научной теории или исчисления для описания(характеристики, предсказания, вывода) всех реальных свойств и отношенийпредполагаемой модели этой теории или исчисления.

Значение слова Полнота по Логическому словарю:

Полнота — (в логике и дедуктивных науках)  — логико-методо­логическое требование, предъявляемое к аксиоматической теории и характеризующее достаточность для определенных целей ее вырази­тельных и дедуктивных средств. Аксиоматическая система является полной, если все ее формулы, истинные при рассматриваемой интер­претации, доказуемы. Полная система содержит все возможные тео­ремы, не противоречащие интерпретации. Для уточнения семанти­ческого понимания П. может быть выдвинуто требование, чтобы либо само предложение, либо его отрицание было теоремой, т. е. чтобы предложение было или доказуемо, или опровержимо. А 1931 г. К. Гёдель показал, что достаточно богатые аксиоматичес­кие системы (включающие арифметику натуральных чисел) в прин­ципе не могут быть полными: в них имеются предложения, которые не могут быть ни доказаны ни опровергнуты. Требование П. не является необходимым. неполные аксиомати­ческие системы могут представлять и теоретический, и практичес­кий интерес.

Значение слова Полнота по словарю Ушакова:

ПОЛНОТА
полноты, мн. нет, ж. 1. Состояние чего-н. наполненного совершенно, до краев (редко). До полноты не доливай. Даль. 2. Полная мера, полный состав, предельное потребное количество, исчерпывающая достаточность. Доклад замечателен полнотой в подборе фактов. 3. Высшая степень чего-н. (книжн.). Полнота художественного выражения. Полнота удовольствия. 4. Тучность, толщина (тела). противоп. худоба. Нездоровая полнота. Лечиться от полноты. От полноты души, или от полноты сердца, или от полноты чувств — от избытка чувств, вследствие переполненности души каким-н. чувством, настроением, впечатлением, из-за сильной степени какого-н. чувства, настроения, впечатления (ср. полнота в 1 знач.). Мы оба молчали от полноты сердца. Пушкин. Не подумайте, чтоб я говорил что из лести, нет, не имею этого порока, от полноты души выражаюсь. Гоголь. Полнота власти (книжн.) — вся власть. В СССР вся полнота власти принадлежит народу.

Определение слова «Полнота» по БСЭ:

Полнота — свойство научной теории, характеризующее достаточность для каких-либо определённых целей её выразительных и (или) дедуктивных средств.
Один из аспектов понятия П. — т. н. функциональная П. (ф. п.) — применительно к естественному языку представляет собой то (неформальное) его качество, благодаря которому на нём можно сформулировать любое осмысленное сообщение, могущее понадобиться для тех или иных целей. Например, английский язык функционально полон с точки зрения целей, которые имел в виду У. Шекспир, создавая
«Гамлета» (если исходить из предположения, что ему удалось полностью реализовать свой замысел). Но и любой другой из «живых» языков, на который «Гамлет» переведён, полон в том же смысле: перевод как раз и служит свидетельством этой ф. п.
Аналогично (в математике), семейство функций, принадлежащих некоторому классу функций, является полным относительно этого класса (и относительно некоторого фиксированного запаса «допустимых» операций над функциями), если любую функцию этого класса можно выразить через функции данного семейства (с помощью допустимых операций). Так, любая из функций sinx или cosx составляет одноэлементный класс, полный для всех тригонометрических функций (относительно четырёх арифметических действий, возведения в квадрат и извлечения квадратного корня). три единичных вектора по осям координат образуют полный класс (относительно сложения, вычитания и умножения на действительное число) для множества всех векторов трёхмерного евклидова пространства.
Понятие ф. п. играет важную роль в математической логике: все двуместные Логические операции исчисления высказываний (см. Логика высказываний) могут быть выражены через конъюнкцию и отрицание, или через дизъюнкцию и отрицание, или через импликацию и отрицание, или даже через единственную операцию антиконъюнкцию
(«штрих Шеффера»), т. е. все эти семейства логических связок представляют собой функционально полные классы операций алгебры логики.
Для логики и её приложений к дедуктивным наукам не менее существенную роль играет т. н. дедуктивная П. (д. п.) аксиоматических теорий (или, что то же, положенных в их основу систем аксиом. эпитет «дедуктивная» обычно опускают). В зависимости от выбора критерия
«достаточности» дедуктивных средств теории (или формального исчисления) приходят к той или иной точной модификации понятия д. п. Вообще аксиоматическая система называется (дедуктивно) полной по отношению к данному свойству (или данной интерпретации), если все её формулы, обладающие данным свойством (истинные при данной интерпретации), доказуемы в ней. Такое понятие д. п.
(«в широком смысле»), связанное с понятием истинности, носит, очевидно, семантический (содержательный, см. Семантика) характер. Но в ряде случаев понятие д. п. удаётся определить чисто синтаксическим (формальным) путём и сделать предметом изучения метаматематическими (см. Метаматематика) средствами. Такая д. п.
(«в узком смысле») определяется как невозможность присоединения к системе без противоречия никакой недоказуемой в ней формулы в качестве аксиомы. эта («абсолютная») П., вообще говоря, сильнее семантической П.: например, Исчисление предикатов, полное в широком смысле, в узком смысле неполно.
Неполные (или, как часто говорят, некатегоричные) системы аксиом, допускающие существенно различные и притом неизоморфные интерпретации (например, теория групп в абстрактной алгебре или теория топологических пространств), представляют особый интерес именно богатством и разнообразием своих приложений (это обусловливается различными путями «пополнения» теории за счёт присоединения различных аксиом).
Но ещё более важно то, что (как установил в 1931 К. Гёдель) для достаточно богатых аксиоматических теорий (включающих формальную арифметику натуральных чисел и тем более аксиоматическую теорию множеств) требования д. п. и непротиворечивости оказываются несовместимыми. Это поразительное открытие составило целую эпоху в развитии математической логики, привело к осознанию принципиальной ограниченности играющего в ней большую роль аксиоматического метода и стимулировало поиски новых, более гибких в известном смысле, логических и логико-математических теорий и новых дедуктивных средств.
См. также ст. Доказательство и лит. при ней.
Лит.: Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, §§ 29 32, 42, 72 (лит.). Новиков П. С., Элементы математической логики, М. 1959 гл. 2, § 10, гл. 3, § 7, гл. 4, §§ 17, 19.



Рубрики П