Что такое Тяготение

Значение слова Тяготение по Ефремовой:

Тяготение — 1. Присущее двум телам свойство притягивать друг друга в зависимости от их массы и расстояния между ними. притяжение.
2. Влечение, стремление к кому-л., чему-л.
3. Потребность в связи с кем-л., чем-л.
4. разг. Тягостное влияние кого-л., чего-л.

Значение слова Тяготение по Ожегову:

Тяготение — Влечение, стремление к кому-чему-нибудь, потребность в чем-нибудь


Тяготение Свойство всех тел притягивать друг друга, притяжение Spec

Тяготение в Энциклопедическом словаре:

Тяготение — (гравитация — гравитационное взаимодействие), универсальноевзаимодействие между любыми видами физической материи (обычным веществом,любыми полями физическими). Если это взаимодействие относительно слабое итела движутся медленно по сравнению со скоростью света в вакууме с, тосправедлив всемирного тяготения закон Ньютона. В случае сильных полей искоростей, сравнимых с c, необходимо пользоваться созданной А. Эйнштейномобщей теорией относительности (ОТО), являющейся обобщением ньютоновскойтеории тяготения на основе специальной относительности теории. В основеОТО лежит принцип эквивалентности — локальной неразличимости сил тяготенияи сил инерции, возникающих при ускорении системы отсчета. Этот принциппроявляется в том, что в заданном поле тяготения тела любой массы ифизической природы движутся одинаково при одинаковых начальных условиях.Теория Эйнштейна описывает тяготение как воздействие физической материи нагеометрические свойства пространства-времени (п.-в.). в свою очередь, этисвойства влияют на движение материи и другие физические процессы. В такомискривленном п.-в. движение тел «по инерции» (т. е. при отсутствии внешнихсил, кроме гравитационных) происходит по геодезическим линиям, аналогичнымпрямым в неискривленном пространстве, но эти линии уже искривлены. Всильном поле тяготения геометрия обычного трехмерного пространстваоказывается неевклидовой, а время течет медленнее, чем вне поля. ТеорияЭйнштейна предсказывает конечную скорость изменения поля тяготения, равнуюскорости света в вакууме (это изменение переносится в виде гравитационныхволн), возможность возникновения черных дыр и др. Экспериментыподтверждают эффекты ОТО.

Значение слова Тяготение по словарю синонимов:

Тяготение — притяжение
гравитация

Значение слова Тяготение по словарю Ушакова:

ТЯГОТЕНИЕ
тяготения, мн. нет, ср. 1. Притяжение. присущее двум материальным телам свойство притягивать друг друга с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними (физ.). Земное тяготение (сила, притягивающая предметы к центру земли). 2. к кому-чему. Влечение, стремление (книжн.). Тяготение к науке. Тяготение к музыке. 3. к кому-чему. Потребность в связи с кем-чем-н., зависимость от кого-чего-н. или единство с кем-чем-н. (книжн.). Экономическое тяготение окраин к центру.

Значение слова Тяготение по словарю Брокгауза и Ефрона:

ТяготениеЗакон Ньютона всемирного Т. может быть формулирован следующим образом: каждый атом взаимодействует с каждым другим атомом, при этом сила взаимодействия (притяжения) всегда направлена по прямой линии, соединяющей атомы, и величина ее изменяется — вместе с расстоянием между ними — обратно пропорционально квадрату расстояния. Если силу притяжения для единицы расстояния обозначить &#966., то для расстояния &#961. единиц — она равна &#966. /&#961. 2. Чтобы выразить полное взаимодействие двух материальных частиц как собрания (напр. &#956. и &#956.) атомов, надо повторить элементарное притяжение столько раз, сколько можно составить сочетаний из &#956. и &#956. атомов по два (считая &#961. 2 общим для всех элементарных притяжений, т. е. расстояния атомов в каждой частице исчезающе малыми сравнительно с расстоянием между атомами различных частиц). Притяжение частиц равно φμ&#956. /&#961. 2. Числом атомов в частице измеряется ее масса: притяжение двух частиц пропорционально произведению их масс. Чтобы составить притяжение двух материальных тел, нужно, пользуясь принципом параллелограмма сил, геометрически сложить все элементарные притяжения, приложенные к одной какой-либо частице. Затем надо суммировать всю систему таких притяжений по всему телу. Вычисление показывает, что если форма тел близка к шару или если взаимное расстояние тел весьма велико сравнительно с их размерами, то с достаточной точностью можно заменить сумму всех частичных притяжений одной силой (R), приложенной соответственно к центрам тел, направленной по линии, соединяющей эти центры, и равной fmm/r2, где m и m массы тел, выраженные в какой-либо единице масс, r — расстояние между центрами тел, а f единица притяжений, т. е. сила, с которой притягиваются две массы, порознь равные выбранной единице масс и взаимно удаленные на единицу расстояний. Иначе говоря, в указанных случаях [Напр., для небесных светил. также для рассматриваемых в теоретической механике материальных точек, т. е. фиктивных бесконечно малых тел, снабженных конечной массой.] полное притяжение тел выражается совершенно аналогично притяжению между материальными частицами. Масса тела измеряется числом атомов в теле, притягивающихся по закону Ньютона. Она может быть определена только из понятия о силе (т. е. мы познаем вещество, только поскольку оно способно развивать и воспринимать силу), измеряет способность тела выделять силу и обратна его способности поддаваться посторонней силе (т. е. обратно пропорциональна тому ускорению, которое может сообщить данная сила телу). Ускорение (v), которое испытывает тело т от силы R, равно R/m. Для указанных случаев из сравнения выражений для R и для v очевидно, что величина ускорения притягивающегося тела не зависит от его собственной массы, а только от массы тела сопритягивающегося и от расстояния между телами. Так, все предметы на поверхности земли получают вследствие взаимного Т. к ней одинаковое ускорение (9,8 м в секунду). Из самого понятия о взаимности силы Т. следует, что меньшее тело притягивает большее (напр. камень всю Землю) с той же самой силой, как и большее притягивает меньшее (Земля притягивает камень), а только ускорения их (а следовательно, и сближения) обратно пропорциональны массам (Земля ничтожно мало придвигается к падающему камню). О законах падения тел на землю, о влиянии центробежной силы вращения Земли, об изменении тяжести на поверхности Земли — см. Тяжесть. Сила притяжения между Землею и каким-нибудь телом измеряется давлением, которое производит тело на точки опоры, — его весом. Исходя из приблизительной неизменности ускорения силы притяжения по всей поверхности Земли, измерение веса тела сводят на практике к измерению его массы: гири, с весом которых сравнивают вес тела, не что иное, как образцы массы. Поэтому следует различать, напр., килограмм-силу от килограмм-массы: килограмм-сила есть такая сила, которая, действуя на килограмм-массу, сообщает ей ускорение 9,8 м в секунду. Иначе говоря, сила взаимного Т. земного шара (которого радиус равен 6370 км, а масса 5,94 х 10 24 кг) и одного килограмма-массы, помещенной на поверхности земли, равна килограмму-силе. Другой пример Т.: две массы, каждая в миллион кг, на расстоянии в один км тяготеют друг к другу с силой, равной 7 миллиграммов — силе, а за первый час взаимодействия сближаются на 0,8 миллиметра. — Еще Ньютон показал, что шаровой слой не оказывает никакого влияния на материальное тело, помещенное внутрь полости слоя: притяжения тела к различным частям слоя взаимно уничтожаются — тело находится в безразличном равновесии. Поэтому если какой-нибудь предмет углубится внутрь Земли, то соответствующий слой вокруг всей Земли перестанет действовать на этот предмет. Если бы Земля была шаром однородным, то сила Т. непрерывно уменьшалась с приближением предмета к центру земли. На самом деле плотность Земли увеличивается к ее центру, а потому сила Т. увеличивается до глубины в 1/6 радиуса Земли, где достигает 16/15 начальной "поверхностной" величины, затем уже уменьшается, на глубине 1/3 радиуса принимает начальное значение, а в центре Земли сила взаимного Т. предмета и Земли равна нулю. При подсчетах принят здесь закон Гоша изменения плотности Земли. Сила Т. имеет потенциал (см.), т. е. количество работы, затрачиваемой при движении какого-либо тела под действием силы Т., не зависит от пути, пройденного телом, но только от его конечного и начального положений. Потенциал силы Т. равен fmm/r. Много раз подымавшийся вопрос о сущности и причинах всемирного Т. остается открытым (см. ниже). Несомненно, он тесно связан с вопросом об атомах. В новейшее время В. Томсон, опираясь на открытия Гельмгольца относительно свойств движения частиц идеальной жидкости, развил идеи о том, что материя, познаваемая нами, есть только род движения эфира (некоторой среды, обладающей свойствами идеальной жидкости и разлитой по всему пространству). Движение жидкости может быть ирротационное и ротационное — вихревое. Гельмгольц показал математически, что эти два рода движения не могут в идеальной жидкости (без вязкости) переходить один в другой. Раз существует вихревая струйка или кольцо, она уничтожиться, распасться не может. Вихри эти известным образом действуют друг на друга, взаимно деформируясь и вызывая поступательное движение. В. Томсон считает, что атомы материи суть взаимодействующие вихри эфира. Закон вечности материи выражает неизменяемость количества вихревого движения. Остальной эфир, омывающий атомы — вихри, имеет ирротационное движение, не взаимодействует и потому непознаваем для наших чувств. Ср. ниже — гипотезу Гюйо. История учения о Т. Еще древние философы смутно сознавали взаимное притяжение как свойство тел. Платон утверждает, что подобное стремится к подобному. такую же мысль высказывал Лукреций. Плутарх в сочинении "De facie in orbe unae" говорит: "луна упала бы на землю как камень, чуть только уничтожилась бы сила ее полета". Из европейских ученых первый Fracastor (1538) говорил, что все тела взаимно притягиваются. Гильберт (1600) считал землю громадным магнитом, притягивающим мелкие тела. Франциск Бэкон ("Novum Organum") поясняет тяжесть, как магнитную силу земного шара. Значительно приблизился к понятию о всемирном Т. Кеплер. он говорит: "тяжесть есть взаимное стремление всех тел. Если бы Землю и Луну не удерживала в их орбитах их оживляющая сила, то Земля и Луна слились бы, при чем Земля приблизилась бы к Луне на 1/54 расстояния, а Луна на остальные 53/54 (обратно пропорционально массам)… Не существуй на земле Т., океаны устремились бы на Луну". От Кеплера, однако, совершенно ускользнул закон квадратов расстояний. Безвременно погибший Горрокс (1635) утверждал, что нечто исходящее из Земли так же ведет Луну в ее орбите, как и любой предмет, летящий около поверхности Земли. Вообще, XVII в. весьма богат попытками формулировать закон Т. Bouilla u d указывал, что силы, исходящие из Солнца, управляющие движениями планет, должны быть обратно пропорциональны квадратам расстояния. Борелли (в 1665 г.) пытался при помощи такого же закона объяснить движения спутников Юпитера. К этому году относится первая попытка Ньютона. он сравнивал ускорение силы тяжести на Земле с тем постоянным уклонением в движении Луны от прямой линии, которое потребно, чтобы Луна описывала круговую орбиту около Земли. Однако размеры Земли, принятые Ньютоном, были еще неверны, и результат был неудовлетворителен. Через 17 лет Ньютон получил более точные измерения Земли, только что выведенные из триангуляции Кассини, и тогда-то (1682) Ньютон окончательно убедился в справедливости своих идей. Между тем Гюйгенс опубликовал (1673) открытые им теоремы о центробежной силе и тем много осветил вопрос. Гук (1674) объявил, что всем небесным телам должно быть присуще Т., иначе они летели бы по прямым линиям. Около 1683 г. (когда Ньютон не публиковал еще свои результаты) новые подтверждения общего Т. светил обратно пропорциально квадратам расстояний были получены Вреном, Гуком, Галлеем. это были, однако, частные односторонние доводы, при личном же свидании Галлея с Ньютоном выяснилось, что у Ньютона уже были не только разработаны доказательства и полная формулировка закона всемирного Т., но ему удалось объяснить уже этим законом много особенностей в движении небесных тел. Впоследствии Гук горячо, хотя и неосновательно, оспаривал первенство в открытии закона Т., но, не будучи математиком, он никогда не мог извлечь никаких следствий из закона, т. е. не сумел его приложить к различным явлениям. 28 апр. 1686 г. Ньютон представил Лондонскому королевскому обществу рукопись своих "Philosophiae Naturalis Principia Mathematica". В этой книге он формулирует закон Т., сводит тяжесть на земле к Т., показывает, что небесные светила (планеты и кометы) должны в силу Т. двигаться вокруг Солнца по коническим сечениям, т. е. орбиты их могут быть только эллипс, парабола или гипербола (законы Кеплера стали следствием закона Т.). Затем Ньютон указывает на необходимость существования взаимных возмущений планет. объясняет главнейшие неравенства движения Луны возмущающим действием Солнца. показывает, что линия апсид орбиты всегда должна уходить вперед по направлению движения Луны, а линия узлов лунной орбиты на эклиптике должна отставать. Наконец, он выводит фигуру Земли как сжатого эллипсоида вращения, определяет размеры сжатия. объясняет явление прецессии действием Луны и Солнца на экваториальную выпуклость Земли. показывает возможность определить по движению спутников массу планет. объясняет явление приливов. Закон всемирного Т. далеко не сразу был принят. Гюйгенс в письме к Лейбницу (1690) называет закон абсурдом, в письме к Лопиталю (1692) — маловероятным. Сам он держался того мнения, что частицы материи притягиваются не друг к другу, а к центрам небесных светил. Мопертюи и др. выражали идею, что внутри Земли находится абсолютно твердое ядро. оно-то одно и притягивает все частицы. Даже еще в 1741 г. Эйлер в своем трактате о приливах не вполне уверен в универсальности Т. В 1745 г. закон Ньютона подвергся серьезному испытанию: Клэро объявил, что полученное им сообразно закону Т. движение апогея орбиты Луны в два раза меньше истинного и предложил заменить закон Т. другим, прибавив к Ньютонову выражению член, зависящий от 4-й степени расстояния. Однако, побуждаемый возражениями Бюффона ("если раз позволить себе изменить столь ясный закон, что помешает впоследствии видоизменять его для каждого нового случая?… такой произвол равносилен полному отрицанию общего закона природы"), Клэро перевычислил свой результат и нашел источник невязки. В другой своей знаменитейшей работе, "Theorie de la figure de la terre" (1743), он еще считается с идеями Гюйгенса и Мопертюи. Зачатки аналитических приемов вычисления возмущений, т. е. взаимодействия планет, видны уже в попытке Борелли исследовать движение спутников Юпитера. Но впервые задача о возмущениях во всей ее общности была поставлена Эйлером. Он же первый применил методу изменения постоянных произвольных, которая проходит красной нитью через все исследования о движениях светил. Мемуар его, представленный в Парижской академии в 1747 г., напечатан также на русском языке в "Собрании ученых рассуждений Петербургской академии" (1749). Около того же времени Клэро и Даламбер напечатали первые мемуары о знаменитой задаче 3-х тел, а в 1752 г. напечатана "Theorie de la lune" Клэро, где можно проследить зародыши многих позднейших приемов небесной механики вплоть до методы Гюльдена. Затем появился ряд работ Лагранжа и Лапласа, и метод изменения постоянных произвольных получает полное развитие. Возмущения планеты, уклонение ее от орбиты (Кеплерова эллипса) переведены на изменения плоскости и фигуры орбиты. Составилось понятие об изменяющейся орбите, об изменениях ее элементов. Полное объяснение Лапласом так назыв. "великого неравенства" Сатурна и Юпитера было последней пробой закона Ньютона. О дальнейших работах в области небесной механики, об открытии Нептуна Леверье и Адамсом, этом триумфе, увенчавшем закон Т., — см. Астрономия. Гипотезы о причине Т. Ньютон, устанавливая закон Т., избегал касаться вопроса о сущности и причине этой силы. Он видел в своем законе лишь плодотворный математический принцип, из которого могли быть выведены все движения небесных тел. Все в природе происходит, как будто бы все частицы материи взаимно притягиваются пропорционально произведению их масс и обратно пропорционально квадрату расстояния. С такой оговоркой необходимо понимать закон Т. и в настоящее время. Однако еще при жизни Ньютона его учеником Котесом в предисловии ко 2-му изданию "Principia" (1713) было формулировано учение о так назыв. действии на расстоянии: все тела действительно притягиваются без всякого взаимного соприкасания, без всякого механизма передачи энергии (ср. Притяжение). Это толкование хотя и крайне удобно по своей простоте, но совершенно непонятно по существу и не может быть допустимо в науке о физических явлениях. Оно равносильно признанию Т. явлением сверхчувственным. Такой взгляд приравнивает Т. к тем таинственным влияниям (anoppoia) светил небесных на судьбы Земли, о которых толковали древние астрологи. Нужно сказать, однако, что возражение, которое обыкновенно приводится против учения о действии на расстоянии: "тело не может действовать там, где его нет", может считаться лишь грубым софизмом. иначе тело могло бы действовать только на самого себя, что в свою очередь совершенно непонятно. С другой стороны, так же неудовлетворительны и все те объяснения, которые придуманы впоследствии для уразумения причины и сущности Т. Основной и общей чертой их является признание промежуточной идеальной среды (эфира), которая передает механически давление и тягу телам. Свойства этого эфира, механизм передачи сил столь же произвольны и малопонятны, как и само действие на расстоянии. Вдобавок эти объяснения только переводят затруднения на другой какой-нибудь пункт вопроса. обыкновенно ими требуется постоянная затрата работы. предполагаются иные "силы", производящие или произведшие вечные движения в эфире. допускается даже беспрестанное уничтожение или возникновение запаса самой среды. Таким образом, хотя все известные нам явления и ведут к признанию того, что каждая частица материи дает знать по всей вселенной о своем существовании, но как это происходит — для нас совершенно непонятно. Ньютон в конце "Principia" заявляет: "причину этих свойств Т. мне не удалось вывести из явлений природы, а выдумывать гипотезы я не хочу". Тем не менее, сохранились иные указания на взгляды Ньютона. В письме к Бойлю (1679) он "в ответ на просьбу" говорит: "я предполагаю существование эфира, частицы которого чрезвычайно разнятся по своей "тонкости" (subtility)… От пределов атмосферы до поверхности Земли и дальше к ее центру частицы эфира постепенно становятся все мельче и мельче. Вообразим какое-либо тело, висящее в воздухе или покоящееся на поверхности земли. Частицы эфира, впитанные порами верхней части тела, грубее, чем частицы эфира в нижней части тела, и так как грубые частицы менее приспособлены находиться в порах тела (being less apt to b e lodged), то они уступают место более тонким частицам, а это может случиться только в том случае, если тело опустится к центру Земли и тем даст возможность поместиться в своих порах более тонким частицам эфира". Здесь, очевидно, дело идет еще лишь о земной тяжести. В 1693 г., через 7 лет после издании "Principia", Ньютон высказал взгляд на Т. в письмах к Бентлею: "Вы говорите о тяжести как о свойстве, присущем материи. Прошу вас, только не приписывайте мне такое мнение — я не претендую на понимание причины Т." (2-е письмо). В третьем письме, которое часто и притом иногда неверно цитируется, Ньютон говорит: "решительно непонятно, как неодушевленная, грубая (inanimate, brute) материя могла бы без посредства чего-либо нематериального воздействовать на другую материю, влиять на нее без взаимного соприкасания. Поэтому я не хочу, чтобы вы мне приписывали понятие о Т. как о чем-то врожденном материи. Мнение, что Т. есть основное свойство, присущее материи, что любое тело может действовать на другие тела на расстоянии через пустое пространство, без посредства чего-либо, что могло бы перенести действие и силу от одного тела к другому, такое мнение для меня кажется полным абсурдом, и я уверен, что ни один человек, способный рассуждать о философских вопросах, не может прийти к нему. Тяжесть есть следствие какой-то причины (agent), действующей непрестанно по известному закону. но решение вопроса о том, материальна ли эта причина или не материальна — я оставляю моим читателям". Необходимо иметь в виду, что письма к Бентлею имеют содержанием рассуждение о бытии высшего разумного существа. По-видимому, Ньютон был склонен признавать метафизическое толкование Т., и здесь кроется причина, почему он согласился на печатание предисловия Котеса. Ньютон считал неуместным помещать иное объяснение в этой книге. Однако во 2-м издании своей "Оптики" (1717) Ньютон возвращается к гипотезе эфира различной плотности и распространяет ее уже на все небесные тела. Ниже изложены вкратце главнейшие из кинетических гипотез, имеющих целью свести Т. к непосредственным толчкам или давлению. Из них наиболее знаменита гипотеза Лесажа, "единственная, которую можно серьезно защищать и оспаривать" (Максуэлл). О попытках (Цёллнер и др.) свести Т. к напряжению элементарных электрических масс — см. Электричество, Энергия. — Иван Бернулли (старший) пытался объяснить Т. еще из вихревой гипотезы Декарта. В центрах вихрей от давления образуются солнца, как очаги света и тепла. Частицы первичной материи вследствие неистового "кипения" в этих центрах трутся, мельчают до того, что получается бесконечно тонкое вещество (потребное для Ньютоновой теории истечения света), которое затем взрывами выбрасывается по всем направлениям. В далеком расстоянии от центров, потеряв свои световые и тепловые свойства, это вещество сгущается в "капли" и, возвращаясь к центрам вихрей, увлекает за собой к этим центрам частицы грубой, познаваемой нами материи, производит явление Т. Капли эти проникают в поры материи, и потому-то действие центростремительного потока пропорционально не поверхностям тел, а их массам. — Лесаж предполагает, что в пространстве несутся по всевозможным направлениям частицы особого тончайшего вещества (corpuscules ultramondaines). Атомы весомой материи непрерывно получают толчки от этих частиц. Если бы в пространстве находилось лишь одно материальное тело, все толчки, полученные им, уравновесились бы. но чуть только вообразим где-нибудь второе тело, они заслонят друг друга от тех толчков, которые были бы направлены изнутри по линии, соединяющей тела. перевесят толчки, получаемые ими снаружи, — тела начнут сближаться. Сила, т. е. причина движения, обратно пропорциональна квадрату расстояния между телами. Чтоб объяснить взаимодействие 3-х тел, расположенных на одной прямой линии, нужно считать размеры частиц ничтожными сравнительно с расстояниями между атомами. Тогда "как туча насекомых задерживает лишь ничтожное количество света, так и в облачке атомов застревает ничтожное число частиц, остальные же проходят дальше. При встрече со вторым телом вторым облачком атомов задерживается такое же количество частиц, и влияние двух тел на третье может равняться сумме отдельных влияний обоих тел, т. е. второе тело не представляет непроницаемого экрана для влияния первого тела на третье. Гипотеза Лесажа помещена в его "Essaе sur lor i gine des forces mortes" (1749). В другой работе, "Essai de Chimie m &eacute. canique", он объясняет сродство элементов из неравенства размеров различных corpuscules ultramondaines. Хотя идеи Лесажа не выдерживают критики при дальнейшем развитии, но основная мысль очень удачна, и его гипотеза вызвала целую литературу. — Эйлер ("Lettres &agrave. une princesse dAllemagne") впервые, хотя в очень общей и уклончивой форме, выражает мысль, что эфир — проводник света — может служить и проводником Т. Находя, что понятие о действии на расстоянии недостойно философа, он предлагает вместо него одно давление эфира, нисколько, впрочем, не заботясь о разъяснении его свойств. — Герапат (1816), исходя из гипотезы Ньютона о различной плотности эфира внутри и вне небесных тел, пытается объяснить эту разницу влиянием внутреннего жара светил, будто эфир способен так же расширяться, как и материальные тела. — Гюйо в работе "El &eacute.ments de physique g&eacute.n&eacute. rale" (1832) ввел понятие о двух родах непрестанного движения — поступательного и колебательного. сумма их во всей вселенной постоянна. количество движения, так же как и материи, вечно, исчезнуть или увеличиться не может и в телах распределено пропорционально их массам. Гюйо объяснял Т. колебательным движением атомов. Для иллюстрации своих идей он производил опыты над притяжением легких предметов звучащими телами (бузиновые шарики притягиваются камертоном). Т. есть сила, зависящая, во-1-х, от разрежения эфира между атомами весомой материи или между отдельными телами (а разрежение это вызвано беспрерывным дрожанием атомов), а во-2-х, от внешнего мирового давления эфира на эти атомы. Сама весомая материя некогда произошла из эфира путем неизвестного процесса, теперь же мы бессильны как получить хоть одну новую частицу материи из эфира, так и снова разложить весомую материю в эфир. — Взгляды Фарадея изложены в его "A speculation on the Nature of Matter" (1844). Исходя из аналогии с электромагнитными явлениями, Фарадей ищет объяснения Т. в напряжении некоторой промежуточной среды. он вводит понятие о силовых линиях. Рассматривая атомы лишь как сгустки этих силовых линий, Фарадей указывает, что мы имеем всегда явления силы и не познаем материи помимо силы. "Несомненно, силовые центры атомов расположены на некоторых расстояниях, но "сущность" одного атома переходит постепенно и нечувствительно в "сущность" другого атома. В этом смысле материя вполне непрерывна, и нам не нужно отличать атомы от разделяющего их пространства. Силы придают своим сгусткам свойства материальных атомов, а когда многие сгустки собраны в один комплекс, эти же силы сообщают ему все свойства кома материи"… Такой взгляд на материю влечет, по-видимому за собой, что она существует во всем пространстве, по крайней мере везде, где только разлита сила Т.: это последнее есть свойство материи, зависящее от некоторой силы, а эти-то силы составляют самую сущность материи. С этой точки зрения атомы материи не только взаимно проницаемы, но каждый атом распространяется, так сказать, на всю солнечную систему, сохраняя в то же время за собой собственный центр силы. В новейшее время Максуэлл и другие физико-теоретики развили введенное Фарадеем понятие о силовой линии, облекли этот "способ выражения" в математическую форму, придали ему физически реальный смысл. "Разлитая в пространстве среда находится в состоянии напряжения (stress), причем для объяснения электромагнитных явлений необходимо считать, что это напряжение по направлению силовых линий подобно натяжению канатов, а в направлениях, перпендикулярных к силовым линиям, напряжение выражается давлением. Для существования же Т., наоборот, давление в среде должно быть направлено по линиям сил, а тяга по направлениям перпендикулярным. Силовые линии не могут считаться лишь математическим отвлечением, они подобны нашим мускулам в состоянии напряжения. Мы можем принимать напряжение среды за объяснение "действия на расстоянии", хотя мы ровно ничего не знаем, откуда берется это напряжение. Давление, испытываемое средой, равно 37000 тонн на кв. дюйм, такой же размер имеет и боковая тяга. Подобное напряжение в 3000 раз больше, чем то, "какое может вынести закаленная сталь" (Максуэлл). — Boucheporne ("Principe g&eacute.n&eacute. rale de la Philosophie Naturelle", 1849) пытался вывести все явления из одного понятия о движении и инерции как свойствах материи. "Перемещение эфира, произведенное движением какого-либо тела А, вызовет, так сказать, втягивание остального эфира в то пространство, откуда только что удалилось это тело. всякое другое тело Б ощущает эти волны своей стороной, обращенной к А: давление эфира с этой стороны уменьшается, и Б начнет двигаться к А". Таким образом, Т. предполагает движение тел, без движения нет и Т. — Уатерстон ("On the integral of gravitation etc.", 1858) говорит: причина, вызывающая всякие силы, разлита по всему пространству, она же обусловливает силу Т., а назначение частиц материи состоит в том, чтобы придавать то или другое направление, тот или другой смысл живым силам, пронизывающим пространство, так или иначе резонировать струящейся в пространстве энергии. Уатерстон не допускал, чтобы у тела конечных размеров могло достать способности влиять на другие сколько угодно далекие тела. этим свойством может обладать лишь энергия, сама по себе наводняющая пространство. Эта энергия, омывающая материальные тела, устремляясь на них, и выражается, между прочим, в кажущемся взаимном Т. тел. — В целом ряде мемуаров "Mathematical Theory of attractive forces" (1859—76) Чаллис излагает обширную математическую теорию волн, распространяющихся в эфире. Он доказывает, что волна оттягивает назад всякое тело, размеры которого чрезвычайно малы сравнительно с шириной самой волны, напротив того, достаточно короткие волны толкают плавающие на них тела вперед по направлению своего распространения. Каждый атом производит в силу своего колебательного движения (дрожания) волны в эфире. Эти волны составляют причину того, что мы называем силами. Из числа продольных волн некоторые будут настолько велики относительно атомов, что вызовут силы притягательные, силы Т.. иные короткие волны обусловят явления частичного отталкивания. Затрату энергии колебательного движения атомов Чаллис думал пополнить "взаимопомощью" звездных миров. В одном из последних мемуаров Чаллис переходит к рассмотрению вопроса об эфирных волнах во 2-м приближении относительно малых величин. но здесь он получает решение, заключающее члены, величина которых может безгранично расти, и, по собственному признанию Чаллиса, вопрос должен считаться поставленным неправильно. — Гленни ("On the principles of the Science of Motion"). Первичные силы, существующие в природе, могут быть только отталкивательными силами давления. Атомы нужно понимать как узлы линий сил взаимного давления. Если бы существовали лишь атомы одинакового напряжения (массы), притом помещенные на равных расстояниях, то вся система находилась бы в равновесии. Если же мысленно изменить массу или расстояния некоторых атомов, то сумма давлений, испытываемых их соседями, не будет уравновешиваться — атомы начнут сближаться, как бы вследствие притяжения. — Lеray ("Nouvelle Theorie de la Gravitation", 1869) несколько видоизменил взгляд Lesage. Он предполагает, что в пространстве скрещиваются потоки эфира, несущиеся по всем направлениям с постоянной скоростью. Если поток эфира встречает тело весомой материи — он пронизывает это тело, при чем скорость потока уменьшается пропорционально плотности и размерам тела. По выходе из тела поток лишь очень медленно восстановляет обычную скорость. Живая сила, оставленная потоком в телах, обусловливает свет, тепло и электромагнетизм небесных светил. Если же поток пронизывает последовательно два тела, то ко второму он приходит с еще не вполне восстановленной скоростью, давление его на второе тело меньше, чем давление остальных потоков, действующих на это же тело: получится тяга второго тела к первому, размер которой обусловлен нехваткой скорости потока, т. е. размерами первого тела и взаимным расстоянием тел. — В. Томсон развил гидродинамическую теорию Т. Если мы предположим, что все пространство заполнено идеальной несжимаемой жидкостью (флюидом), а каждое материальное тело воспроизводит в себе и выделяет из себя непрерывно и с равномерной скоростью эту жидкость, при чем жидкость утекает в бесконечность. или же наоборот, каждое тело неустанно впитывает и уничтожает в себе эту жидкость, при чем жидкость неизменно прибывает из бесконечности, то в обоих случаях будет существовать притяжение между телами, обратно пропорциональное квадрату расстояния. Если бы одно тело впитывало, а другое извергало жидкость, то такие тела отталкивались бы. Небесная механика. Закон Т. нужно понимать как сокращеннейшее выражение всей совокупности движений небесных тел. Цель небесной механики состоит в том, чтобы вывести из принципа, данного Ньютоном, все его следствия, "раскрыть" сокращенное выражение движения и проверить результаты с действительным движением. Вся небесная механика разделяется на два главных отдела: учение о поступательном движении и учение о фигурах и вращательном движении небесных тел. О так наз. задаче двух тел, т. е. чисто планетарном движении по законам Кеплера, и о работах последнего — см. Эллиптическое движение. О задаче трех тел, о различных приемах исследования возмущенного движения — см. Устойчивость солнечной системы. ср. также Ускорение вековое луны. О теории фигур и вращательного движения — см. Фигуры небесных тел, Широта. Скорость распространения Т. если не бесконечна, то во всяком случае должна быть громадна. Первый, кто выяснил математически этот вопрос, был Лаплас. Он доказал, что если бы скорость Т. равнялась даже скорости света, то в эллиптическом движении всех планет, в том числе и Земли, вокруг Солнца появились бы значительные возмущения. так, долгота Земли в ее орбите увеличивалась бы каждый год на лишние 20. Точность современных наблюдений не допускает, чтобы подобные невязки превышали 2" в столетие, поэтому скорость Т. по крайней мере в 6 миллионов раз больше скорости света. Вывод Лапласа подтвержден Тиссераном и другими теоретиками. В 1884 г. Леман-Фильес решил тот же вопрос несколько иначе: он принимал во внимание поступательное движение солнца. Низший предел скорости Т. получился иной, но по прежнему превышающий всякое представление. Попытки изменить выражение закона всемирного Т. В некоторых из приведенных выше гипотез скрыто допущение, что сила Т. действует иначе на тело движущееся, чем на тело, находящееся в относительном покое. К подобной мысли пришли и чисто математическим путем, разрабатывая теорию потенциальной функции в ее приложении к электромагнетизму. Предложенные законы притяжения выражают силу как функцию не только от расстояния притягивающихся масс, но и от абсолютной или относительной скорости их передвижения в пространстве. Гаусс, желая выразить взаимное притяжение элементов двух движущихся в пространстве токов, пришел с формуле: fmm/r&sup2. = [1 + 1/c&sup2.(2n&sup2. — 3(dr/dt)&sup2.)] где n скорость относительного передвижения элементов токов, с — постоянная величина. Однако такая сила не имеет потенциала (см.) и потому едва ли может быть принята для объяснения физических явлений. По закону Вебера, потенциал силы притяжения W = (fmm/r)[1 — (1/c&sup2.)(dr/dt)&sup2.]. Постоянное с есть некоторая скорость, подлежащая определению из опыта. Вебер нашел его равным 439000 км в секунду. Еще два другие закона быи предложены Риманом и Клаузиусом. Соответственные потенциалы выражаются: R = (fmm/r)[1 — (n&sup2./c&sup2.)]. C = (fmm/r)[1 + (1/c&sup2.)vvcos(v, v)] где n — относительная скорость, a v и v — абсолютные скорости притягивающихся элементов токов. Цёльнер, Тиссеран, Гарцер, Зегерс и др. пытались приложить эти законы к астрономии, т. е. допускали, что по этим законам притягиваются и все материальные частицы. Из сравнения с потенциалом Ньютонова закона N = fmm/r ясно, что при с достаточно большом влияние дополнительных членов в выражениях W, R или С можно принимать как силы, возмущающие движения небесных тел. Эти возмущения скажутся больше всего в перемещении перигелия орбиты планеты, и в них-то хотели найти объяснения для движения перигелия Меркурия (см., а также Перигелий). Напр., если принять с равной скорости света, движение перигелия Меркурия при законе Вебера увеличится на 28" в столетие, и нужно принять с = 250000 км, чтобы объяснить существующую невязку в 38. С такой же целью было предложено совершенно иное видоизменение закона Ньютона. Еще он сам показал, что стоит только ничтожно изменить показатель 2 в законе Т., и тело вместо эллипса будет описывать около центра притяжения весьма сложную кривую, состоящую из множества равных, но различно расположенных эллиптических завитков. иначе говоря, замена формулы fmm/r&sup2. на fmm/r&sup2.+ a, где а весьма мало, вызовет постоянные и громадные перемещения перигелия орбиты. Галль показал, что для объяснения невязки перигелия Меркурия достаточно было бы положить а = 0,00000016. Однако на такое изменение закона Т. нужно смотреть как на простой интерполяционный прием, не имеющий под собой теоретического основания. Иной характер носит поправка, испробованная еще Лапласом, на потухание или поглощение Т. средой. Сила в этом случае выражается: (fmm/r&sup2.)e &#955. r, гд е — основание Неперовых логарифмов (2,71828…), а &#955. — постоянная, настолько малая величина, что множитель e &#955. r чувствительно отличен от единицы только для очень больших расстояний. По вычислениям Зеелигера (1896), для объяснения невязки Меркурия нужно положить &#955. = 0,00000038. Сопоставление закона Т. с результатами наблюдений. Еще нельзя утверждать, что движения всех небесных тел объяснены вполне и могут быть предвычислены с какой угодно точностью на основании закона Ньютона. Некоторые особенности в движении Меркурия, Луны, кометы Энке еще ждут своего объяснения. Однако нельзя видеть здесь необходимость тронуть самый закон. Во-первых, мы не можем претендовать на полное знание распределения масс в пространстве — могут существовать еще не замеченные нами скопления материи. Здесь поучительны как история открытия Нептуна, масса которого сказалась в накоплявшихся ошибках теории движения Урана, так и открытие планеты Эрос вне той области пространства, где привыкли находить малые планеты. Во-вторых, нужно иметь в виду полное бессилие математического анализа перед общей задачей движения светил. Приходится употреблять неуклюжие методы разложения в бесконечные ряды и ценою огромного труда выискивать те члены, которые могут иметь чувствительное влияние на результаты вычислений. Напр., небольшие уклонения Луны от существующих таблиц ее движения можно относить к еще не выясненным возмущениям высших порядков Луны планетами. В-третьих, на движение поступательное светил влияет и распределение масс внутри их, уклонения от шарообразности, фигуры атмосфер. так, одним из возможных объяснений движения перигелия Меркурия должны считаться неисследованное сжатие солнца, газовые оболочки, окружающие солнце или даже постоянные перемещения масс внутри и на поверхности его (см. Солнце). Характерным примером трудностей, какие представляют различные задачи небесной механики, запутанности перекрещивающихся влияний, иногда совершенно неожиданных, служит знаменитый вопрос о вековом ускорении Луны (см.). Особенности движения кометы Энке привели к гипотезе о междупланетной среде, сопротивляющейся движению. Однако теперь выяснилось, что такая среда влияла бы несколько иначе, а всего вероятнее, что комета Энке встречает где-то в пространстве поток метеоров и в этой только части орбиты скорость кометы претерпевает уменьшение. Новейшие таблицы движения планет составлены Ньюкомбом. в основание их он положил до 6 2 000 отдельных наблюдений планет. Кроме уже известного и вполне подтвержденного Ньюкомбом движения перигелия Меркурия, оказались еще два небольшие несогласия теории с наблюдениями, именно — в вековых движениях узла орбиты Венеры и перигелия Марса. Прибавив сюда небольшие неравенства Луны, мы имеем все, что в движении солнечной системы подлежит разъяснению. Спешим оговориться, что, по всей вероятности, более точные наблюдения, более строгие методы вычисления возмущений, особенно вековых, обнаружат новые невязки, но величина их, конечно, будет еще меньше. Надо вспомнить, что ошибки в теории движения Урана, на основании которых найден Нептун, казавшиеся совершенно недопустимыми еще 70 лет тому назад, были таковы, что если бы поместить на небе рядом с светлою точкой истинной планеты другую на месте, указанном теорией, они совершенно сливались бы для плохо вооруженного глаза. Современные астрономы-теоретики не столько заботятся об изображении с полной точностью движения планет за определенный промежуток времени, сколько о возможности знать это движение с достаточной точностью на период какой угодно длины. Кроме видимого положения планет, предсказываемого таблицами, критериумом строгости закона Ньютона служит согласие различных методов определения масс и других астрономических постоянных. Приведем несколько примеров. Отношение масс солнца и Юпитера из движения спутников этой планеты Шур (1881) нашел равным 1047.23. то же отношение из возмущений малой планеты Фемиды Крюгер (1873) определил в 1047.54. то же Гердтль (1 8 88) из возмущений кометы Виннеке — 1047.18. Метод вычисления и даже сущность наблюдений, положенных в основу этих результатов, совершенно различные. положения спутников определялись относительно самой планеты, положения кометы и малой планеты — относительно звезд. Еще убедительнее согласие величины параллакса (см.) Солнца, полученной чисто тригонометрическими способами, с результатами, полученными из теории движения Земли: из наблюдений малых планет найдено 8.80". из так назыв. параллактического неравенства Луны 8.802. из величины массы Земли, вычисленной на основании вековых возмущений нижних планет, 8.759. Чтобы оценить согласие этих величин, надо вспомнить, что еще 50 лет тому назад принималась верной величина 8.57. Всего лет 10 тому назад величина сжатия земли, выведенная из чисто геодезических операций, разнилась значительно от величины, полученной из теории прецессии как следствия притяжения Луной экваториальной выпуклости Земли. Доказано было, что невязка не может уничтожиться от замены принятого гипотетического распределения плотностей внутри Земли на какое угодно другое. В настоящее же время выяснились недостатки "геодезического" определения сжатия, и согласие между результатами может считаться удовлетворительным (ср. Сжатие, Фигура земли). Т. в звездных мерах. Нет средств убедиться, приложим ли закон Т. Ньютона ко всем звездным мирам, не существуют ли там другие силы взаимодействия: видимые собственные движения звезд изучены еще слишком мало. В 1803 г. Гершель обнаружил орбитальное движение в системах двойных звезд. Насколько можно судить по накопившимся наблюдениям, спутники в таких системах движутся по эллипсам (причем главная звезда находится внутри такого эллипса), а радиусы-векторы описывают равные площади в равные промежутки времени, т. е. имеет место закон площадей. Этих фактов было бы довольно, чтобы заключить, что обе звезды притягиваются взаимно по закону Ньютона (если отбросить, впрочем, возможность существования сил, действующих различно по различным направлениям). Однако измерения двойных звезд еще настолько грубы, что никак нельзя считать этот вопрос решенным. Мало того, для некоторых двойных звезд наблюдения не удалось еще пригнать ни к какому эллипсу. — Не менее важен для выяснения закона Т. между звездами вопрос о так назыв. темных спутниках. Бессель (1844) указал, что в собственном движении Сириуса существуют периодические колебания, которые могли бы найти себе объяснение в возмущениях Сириуса каким-либо невидимым для нас соседним ему светилом. Подобные колебания обнаружены были и в движении Проциона. Для гипотетических светил были вычислены орбиты, и когда Кларк (1861) заметил крайне слабую звезду вблизи Сириуса, a Шеберле (1896) то же открытие сделал для Проциона, оказалось, что положения этих "темных" спутников удовлетворительно согласуются с предсказанными на основании закона Т. Косвенным доказательством закона Т. может, пожалуй, служить неравенство в колебаниях яркости Алголя. Тиссеран объяснил их тем влиянием, какое оказывало бы сжатие главной звезды на движение линии апсид орбиты спутника. С другой стороны, является непонятной полная неподвижность в некоторых парах звезд. За целое столетие обе звезды не изменяют чувствительно взаимного положения, а между тем в пространстве такая пара несется с общей скоростью. Задача трех тел, неразрешимая для математического анализа, имеет много иллюстраций в звездных мирах (напр. тройная звезда &#950. Cancri), но наблюдения еще слишком недостаточны и неопределенны, чтобы делать какие-либо заключения. — Еще менее определенно можно говорить о Т. взаимно далеких звезд. Правда, теперь может считаться доказанным, что весь Млечный Путь разбивается на отдельные участки, отдельные скопища звезд, как будто бы господствовала повсеместно сила, "скучившая" звезды, но видеть здесь несомненное проявление силы Т. нельзя. Солнце несется в пространстве, как и все звезды. но чем вызвано это движение, регулируется ли его скорость и направление силами, исходящими из всей совокупности звездных миров, или чем-нибудь иным — сказать невозможно. Несколько раз формулированные идеи о центральном светиле, управляющем движением остальных звезд, ни на чем не основаны и теперь оставлены. Мы ровно ничего не знаем о движении звездной вселенной в ее целом. Некоторые звезды (например 1830 каталога Грумбриджа, 61 созв. Лебедя) несутся с такой скоростью, какая не могла быть вызвана Т. всей видимой вселенной. таким образом, скорости звезд не могут сами по себе привести к надежным заключениям о Т. В иных случаях движение отдельных звезд указывает, по-видимому, на какую-то общность происхождения. Так, пять ярких звезд Большой Медведицы несутся в пространстве все по одному направлению, точно под действием общей им силы. Иногда звезды в таких "струйках" связаны (судя по фотографиям Пикеринга, Вольфа, бр. Анри) даже видимо друг с другом узкими туманными полосками (см. Плеяды в ст. Фотография неба). В Орионе открыта туманная полоска с "нанизанными" на нее 16 звездочками. Характер некоторых деталей строения туманности Ориона, а также туманного фона Млечного Пути наводит на мысль о гигантских потоках космической бесформенной материи, которые разветвляются и клубятся, точно претерпевая сопротивление какой-то мировой среды, Без сомнения, материя взаимодействует везде и во всяком состоянии, но как выражаются эти силы взаимодействия, можно ли их свести к закону Т. — вопрос открытый. В. Серафимов.

Определение слова «Тяготение» по БСЭ:

Тяготение — гравитация, гравитационное взаимодействие, универсальное взаимодействие между любыми видами материи. Если это взаимодействие относительно слабое и тела движутся медленно (по сравнению со скоростью света), то справедлив закон всемирного тяготения Ньютона. В общем случае Т. описывается созданной А. Эйнштейном общей теорией относительности. Эта теория описывает Т. как воздействие материи на свойства пространства и времени. в свою очередь, эти свойства пространства-времени влияют на движение тел и др. физические процессы. Таким образом, современная теория Т. резко отличается от теории других видов взаимодействия — электромагнитного, сильного и слабого.
Теория тяготения Ньютона
Первые высказывания о Т. как всеобщем свойстве тел относятся к античности. Так, Плутарх писал: «Луна упала бы на Землю как камень, чуть только уничтожилась бы сила её полёта».
В 16 и 17 вв. в Европе возродились попытки доказательства существования взаимного тяготения тел. Основатель теоретической астрономии И. Кеплер говорил, что «тяжесть есть взаимное стремление всех тел». Итальянский физик Дж. Борелли пытался при помощи Т. объяснить движение спутников Юпитера вокруг планеты. Однако научное доказательство существования всемирного Т. и математическая формулировка описывающего его закона стали возможны только на основе открытых И. Ньютоном законов механики. Окончательная формулировка закона всемирного Т. была сделана Ньютоном в вышедшем в 1687 главном его труде «Математические начала натуральной философии».
Ньютона закон тяготения гласит, что две любые материальные частицы с массами mА и mВ притягиваются по направлению друг к другу с силой F, прямо пропорциональной произведению масс и обратно пропорциональной квадрату расстояния r между ними:


F = G
mAmB
r2
&emsp.&emsp.&emsp. (1)

(под материальными частицами здесь понимаются любые тела при условии, что их линейные размеры много меньше расстояния между ними. см. Материальная точка). Коэффициент пропорциональности G называется постоянной тяготения Ньютона, или гравитационной постоянной. Численное значение G было определено впервые английским физиком Г. Кавендишем (1798), измерившим в лаборатории силы притяжения между двумя шарами. По современным данным, G = (6,673 ± 0,003)·10&minus.8 смі/г·секІ.
Следует подчеркнуть, что сама форма закона Т. (1) (пропорциональность силы массам и обратная пропорциональность квадрату расстояния) проверена с гораздо большей точностью, чем точность определения коэффициента G. Согласно закону (1), сила Т. зависит только от положения частиц в данный момент времени, то есть гравитационное взаимодействие распространяется мгновенно. Другой важной особенностью закона тяготения Ньютона является тот факт, что сила Т., с которой данное тело A притягивает другое тело В, пропорциональна массе тела В. Но так как ускорение, которое получает тело В, согласно второму закону механики, обратно пропорционально его массе, то ускорение, испытываемое телом В под влиянием притяжения тела A, не зависит от масса тела В. Это ускорение носит название ускорения свободного падения. (Более подробно значение этого факта обсуждается ниже.)
Для того чтобы вычислить силу Т., действующую на данную частицу со стороны многих др. частиц (или от непрерывного распределения вещества в некоторой области пространства), надо векторно сложить силы, действующие со стороны каждой частицы (проинтегрировать в случае непрерывного распределения вещества). Таким образом, в ньютоновской теории Т. справедлив принцип суперпозиции. Ньютон теоретически доказал, что сила Т. между двумя шарами конечных размеров со сферически симметричным распределением вещества выражается также формулой (1), где mА и mВ — полные массы шаров, а r — расстояние между их центрами.
При произвольном распределении вещества сила Т., действующая в данной точке на пробную частицу, может быть выражена как произведение массы этой частицы на вектор g, называемый напряжённостью поля Т. в данной точке. Чем больше величина (модуль) вектора g, тем сильнее поле Т.
Из закона Ньютона следует, что поле Т. — потенциальное поле, то есть его напряжённость g может быть выражена как градиент некоторой скалярной величины &phi., называемым гравитационным потенциалом:
g = &minus.grad &phi.. &emsp.&emsp.&emsp. (2)
Так, потенциал поля Т. частицы массы m может быть записан в виде:

&phi. = &minus.
Gm
r
. &emsp.&emsp.&emsp. (3)

Если задано произвольное распределение плотности вещества в пространстве, &rho. = &rho.(r), то теория потенциала позволяет вычислить гравитационный потенциал &phi. этого распределения, а следовательно, и напряжённость гравитационного поля g во всём пространстве.
Потенциал &phi. определяется как решение Пуассона уравнения.
&Delta.&phi. = 4&pi.G&rho., &emsp.&emsp.&emsp. (4)
где &Delta. — Лапласа оператор.
Гравитационный потенциал какого-либо тела или системы тел может быть записан в виде суммы потенциалов частичек, слагающих тело или систему (принцип суперпозиции), то есть в виде интеграла от выражений (3):

I = &minus.
&int.
Gdm
r
. &emsp.&emsp.&emsp. (4a)

Интегрирование производится по всей массе тела (или системы тел), r — расстояние элемента массы dm от точки, в которой вычисляется потенциал. Выражение (4a) является решением уравнения Пуассона (4). Потенциал изолированного тела или системы тел определяется, вообще говоря, неоднозначно. Так, например, к потенциалу можно прибавлять произвольную константу. Если потребовать, чтобы вдали от тела или системы, на бесконечности, потенциал равнялся нулю, то потенциал определяется решением уравнения Пуассона однозначно в виде (4a).
Ньютоновская теория Т. и ньютоновская механика явились величайшим достижением естествознания. Они позволяют описать с большой точностью обширный круг явлений, в том числе движение естественных и искусственных тел в Солнечной системе, движения в др. системах небесных тел: в двойных звёздах, в звёздных скоплениях, в галактиках. На основе теории тяготения Ньютона было предсказано существование неизвестной ранее планеты Нептун и спутника Сириуса и сделаны многие др. предсказания, впоследствии блестяще подтвердившиеся. В современной астрономии закон тяготения Ньютона является фундаментом, на основе которого вычисляются движения и строение небесных тел, их эволюция, определяются массы небесных тел. Точное определение гравитационного поля Земли позволяет установить распределение масс под её поверхностью (гравиметрическая разведка) и, следовательно, непосредственно решать важные прикладные задачи. Однако в некоторых случаях, когда поля Т. становятся достаточно сильными, а скорости движения тел в этих полях не малы по сравнению со скоростью света, Т. уже не может быть описано законом Ньютона.
Необходимость обобщения закона тяготения Ньютона Теория Ньютона предполагает мгновенное распространение Т. и уже поэтому не может быть согласована со специальной теорией относительности (см. Относительности теория), утверждающей, что никакое взаимодействие не может распространяться со скоростью, превышающей скорость света в вакууме. Нетрудно найти условия, ограничивающие применимость ньютоновской теории Т. Так как эта теория не согласуется со специальной теорией относительности, то её нельзя применять в тех случаях, когда гравитационные поля настолько сильны, что разгоняют движущиеся в них тела до скорости порядка скорости света c. Скорость, до которой разгоняется тело, свободно падающее из бесконечности (предполагается, что там оно имело пренебрежимо малую скорость) до некоторой точки, равна по порядку величины корню квадратному из модуля гравитационного потенциала
&phi. в этой точке (на бесконечности &phi. считается равным нулю). Таком образом, теорию Ньютона можно применять только в том случае, если
|&phi.| << cІ. &emsp.&emsp.&emsp. (5)
В полях Т. обычных небесных тел это условие выполняется: так, на поверхности Солнца |&phi.|/cІ &asymp. 4·10&minus.6, а на поверхности белых карликов — порядка 10&minus.3.
Кроме того, ньютоновская теория неприменима и к расчёту движения частиц даже в слабом поле Т., удовлетворяющем условию (5), если частицы, пролетающие вблизи массивных тел, уже вдали от этих тел имели скорость, сравнимую со скоростью света. В частности, теория Ньютона неприменима для расчёта траектории света в поле Т. Наконец, теория Ньютона неприменима при расчётах переменного поля Т., создаваемого движущимися телами (например, двойными звёздами) на расстояниях r >
&lambda. = с&tau., где &tau. — характерное время движения в системе (например, период обращения в системе двойной звезды). Действительно, согласно ньютоновской теории, поле Т. на любом расстоянии от системы определяется формулой (4a), то есть положением масс в тот же момент времени, в который определяется поле. Это означает, что при движении тел в системе изменения гравитационного поля, связанные с перемещением тел, мгновенно передаются на любое расстояние r. Но, согласно специальной теории относительности, изменение поля, происходящее за время
&tau., не может распространяться со скоростью, большей c.
Обобщение теории Т. на основе специальной теории относительности было сделано А. Эйнштейном в 1915-16. Новая теория была названа её творцом общей теорией относительности.
Принцип эквивалентности Самой важной особенностью поля Т., известной в ньютоновской теории и положенной Эйнштейном в основу его новой теории, является то, что Т. совершенно одинаково действует на разные тела, сообщая им одинаковые ускорения независимо от их массы, химического состава и др. свойств. Так, на поверхности Земли все тела падают под влиянием её поля Т. с одинаковым ускорением — ускорением свободного падения. Этот факт был установлен опытным путём ещё Г. Галилеем и может быть сформулирован как принцип строгой пропорциональности гравитационной, или тяжёлой, массы mT, определяющей взаимодействие тела с полем Т. и входящей в закон (1), и инертной массы mИ, определяющей сопротивление тела действующей на него силе и входящей во второй закон механики Ньютона (см. Ньютона законы механики). Действительно, уравнение движения тела в поле Т. записывается в виде:
mИа = F = mTg, &emsp.&emsp.&emsp. (6)
где а — ускорение, приобретаемое телом под действием напряжённости гравитационного поля g. Если mИ пропорциональна mТ и коэффициент пропорциональности одинаков для любых тел, то можно выбрать единицы измерения так, что этот коэффициент станет равен единице, mИ = mТ. тогда они сокращаются в уравнении (6), и ускорение а не зависит от массы и равно напряжённости g поля Т., а = g, в согласии с законом Галилея. (О современном опытном подтверждении этого фундаментального факта см. ниже.)
Таким образом, тела разной массы и природы движутся в заданном поле Т. совершенно одинаково, если их начальные скорости были одинаковыми. Этот факт показывает глубокую аналогию между движением тел в поле Т. и движением тел в отсутствие Т., но относительно ускоренной системы отсчёта. Так, в отсутствие Т. тела разной массы движутся по инерции прямолинейно и равномерно. Если наблюдать эти тела, например, из кабины космического корабля, который движется вне полей Т. с постоянным ускорением за счёт работы двигателя, то, естественно, по отношению к кабине все тела будут двигаться с постоянным ускорением, равным по величине и противоположным по направлению ускорению корабля. Движение тел будет таким же, как падение с одинаковым ускорением в постоянном однородном поле Т. Силы инерции, действующие в космическом корабле, летящем с ускорением, равным ускорению свободного падения на поверхности Земли, неотличимы от сил гравитации, действующих в истинном поле Т. в корабле, стоящем на поверхности Земли. Следовательно, силы инерции в ускоренной системе отсчёта (связанной с космическим кораблём) эквивалентны гравитационному полю. Этот факт выражается принципом эквивалентности Эйнштейна. Согласно этому принципу, можно осуществить и процедуру обратную описанной выше имитации поля Т. ускоренной системой отсчёта, а именно, можно
«уничтожить» в данной точке истинное гравитационное поле введением системы отсчёта, движущейся с ускорением свободного падения. Действительно, хорошо известно, что в кабине космического корабля, свободно (с выключенными двигателями) движущегося вокруг Земли в её поле Т., наступает состояние невесомости — не проявляются силы тяготения. Эйнштейн предположил, что не только механическое движение, но и вообще все физические процессы в истинном поле Т., с одной стороны, и в ускоренной системе в отсутствие Т., с другой стороны, протекают по одинаковым законам. Этот принцип получил название
«сильного принципа эквивалентности» в отличие от «слабого принципа эквивалентности», относящегося только к законам механики.
Основная идея теории тяготения Эйнштейна
Рассмотренная выше система отсчёта (космический корабль с работающим двигателем), движущаяся с постоянным ускорением в отсутствие поля Т., имитирует только однородное гравитационное поле, одинаковое по величине и направлению во всём пространстве. Но поля Т., создаваемые отдельными телами, не таковы. Для того чтобы имитировать, например, сферическое поле Т. Земли, нужны ускоренные системы с различным направлением ускорения в различных точках. Наблюдатели в разных системах, установив между собой связь, обнаружат, что они движутся ускоренно друг относительно друга, и тем самым установят отсутствие истинного поля Т. Таким образом, истинное поле Т. не сводится просто к введению ускоренной системы отсчёта в обычном пространстве, или, говоря точнее, в пространстве-времени специальной теории относительности. Однако Эйнштейн показал, что если, исходя из принципа эквивалентности, потребовать, чтобы истинное гравитационное поле было эквивалентно локальным соответствующим образом ускоренным в каждой точке системам отсчёта, то в любой конечной области пространство-время окажется искривленным — неевклидовым. Это означает, что в трёхмерном пространстве геометрия, вообще говоря, будет неевклидовой
(сумма углов треугольника не равна &pi., отношение длины окружности к радиусу не равно 2&pi. и т.д.), а время в разных точках будет течь по-разному. Таким образом, согласно теории тяготения Эйнштейна, истинное гравитационное поле является не чем иным, как проявлением искривления (отличия геометрии от евклидовой) четырёхмерного пространства-времени.
Следует подчеркнуть, что создание теории тяготения Эйнштейна стало возможным только после открытия неевклидовой геометрии русским математиком Н. И. Лобачевским, венгерским математиком Я. Больяй, немецкими математиками К. Гауссом и Б. Риманом.
В отсутствие Т. движение тела по инерции в пространстве-времени специальной теории относительности изображается прямой линией, или, на математическом языке, экстремальной (геодезической) линией. Идея Эйнштейна, основанная на принципе эквивалентности и составляющая основу теории Т., заключается в том, что и в поле Т. все тела движутся по геодезическим линиям в пространстве-времени, которое, однако, искривлено, и, следовательно, геодезические линии уже не прямые.
Массы, создающие поле Т., искривляют пространство-время. Тела, которые движутся в искривленном пространстве-времени, и в этом случае движутся по одним и тем же геодезическим линиям независимо от массы или состава тела. Наблюдатель воспринимает это движение как движение по искривленным траекториям в трёхмерном пространстве с переменной скоростью. Но с самого начала в теории Эйнштейна заложено, что искривление траектории, закон изменения скорости — это свойства пространства-времени, свойства геодезических линий в этом пространстве-времени, а следовательно, ускорение любых различных тел должно быть одинаково и, значит, отношение тяжёлой массы к инертной [от которого зависит ускорение тела в заданном поле Т., см. формулу (6)] одинаково для всех тел, и эти массы неотличимы. Таким образом, поле Т., по Эйнштейну, есть отклонение свойств пространства-времени от свойств плоского (не искривлённого) многообразия специальной теории относительности.
Вторая важная идея, лежащая в основе теории Эйнштейна, — утверждение, что Т., то есть искривление пространства-времени, определяется не только массой вещества, слагающего тело, но и всеми видами энергии, присутствующими в системе. Эта идея явилась обобщением на случай теории Т. принципа эквивалентности массы (m) и энергии (Е) специальной теории относительности, выражающейся формулой Е = mсІ. Согласно этой идее, Т. зависит не только от распределения масс в пространстве, но и от их движения, от давления и натяжений, имеющихся в телах, от электромагнитного поля и всех др. физических полей.
Наконец, в теории тяготения Эйнштейна обобщается вывод специальной теории относительности о конечной скорости распространения всех видов взаимодействия. Согласно Эйнштейну, изменения гравитационного поля распространяются в вакууме со скоростью c.
Уравнения тяготения Эйнштейна
В специальной теории относительности в инерциальной системе отсчёта квадрат четырёхмерного «расстояния» в пространстве-времени (интервала ds) между двумя бесконечно близкими событиями записывается в виде:
dsІ = (cdt)І &minus. dxІ &minus. dyІ &minus. dzІ &emsp.&emsp.&emsp. (7)
где t — время, x, y, z — прямоугольные декартовы (пространственные) координаты. Эта система координат называется галилеевой. Выражение (7) имеет вид, аналогичный выражению для квадрата расстояния в евклидовом трёхмерном пространстве в декартовых координатах (с точностью до числа измерений и знаков перед квадратами дифференциалов в правой части). Такое пространство-время называют плоским, евклидовым, или, точнее, псевдоевклидовым, подчёркивая особый характер времени: в выражении (7) перед (cdt)І стоит знак
«+», в отличие от знаков «-» перед квадратами дифференциалов пространственных координат. Таким образом, специальная теория относительности является теорией физических процессов в плоском пространстве-времени (пространстве-времени Минковского. см. Минковского пространство).
В пространстве-времени Минковского не обязательно пользоваться декартовыми координатами, в которых интервал записывается в виде (7). Можно ввести любые криволинейные координаты. Тогда квадрат интервала ds2 будет выражаться через эти новые координаты общей квадратичной формой:
dsІ = gikdx idx k &emsp.&emsp.&emsp. (8)
(i, k = 0, 1, 2, 3), где x№, xІ, xі — произвольные пространств, координаты, x0 = ct — временная координата (здесь и далее по дважды встречающимся индексам производится суммирование). С физической точки зрения переход к произвольным координатам означает и переход от инерциальной системы отсчёта к системе, вообще говоря, движущейся с ускорением (причём в общем случае разным в разных точках), деформирующейся и вращающейся, и использование в этой системе не декартовых пространственных координат. Несмотря на кажущуюся сложность использования таких систем, практически они иногда оказываются удобными. Но в специальной теории относительности всегда можно пользоваться и галилеевой системой, в которой интервал записывается особенно просто. [В этом случае в формуле (8) gik = 0 при i &ne. k, g00 = 1, gii = &minus.1 при i = 1, 2, 3.]
В общей теории относительности пространство-время не плоское, а искривленное. В искривленном пространстве-времени (в конечных, не малых, областях) уже нельзя ввести декартовы координаты, и использование криволинейных координат становится неизбежным. В конечных областях такого искривленного пространства-времени dsІ записывается в криволинейных координатах в общем виде (8). Зная gik как функции четырёх координат, можно определить все геометрические свойства пространства-времени. Говорят, что величины gik определяют метрику пространства-времени, а совокупность всех gik называют метрическим тензором. С помощью gik вычисляются темп течения времени в разных точках системы отсчёта и расстояния между точками в трёхмерном пространстве.
Так, формула для вычисления бесконечно малого интервала времени d&tau. по часам, покоящимся в системе отсчёта, имеет вид:
d&tau. = &radic.g₀&#x2080. dxє/c.
При наличии поля Т. величина g₀&#x2080. в разных точках разная, следовательно, темп течения времени зависит от поля Т. Оказывается, что чем сильнее поле, тем медленнее течёт время по сравнению с течением времени для наблюдателя вне поля.
Математическим аппаратом, изучающим неевклидову геометрию (см. Риманова геометрия) в произвольных координатах, является Тензорное исчисление. Общая теория относительности использует аппарат тензорного исчисления, её законы записываются в произвольных криволинейных координатах (это означает, в частности, запись в произвольных системах отсчёта), как говорят, в ковариантном виде.
Основная задача теории Т.- определение гравитационного поля, что соответствует в теории Эйнштейна нахождению геометрии пространства-времени. Эта последняя задача сводится к нахождению метрического тензора gik.
Уравнения тяготения Эйнштейна связывают величины gik с величинами, характеризующими материю, создающую поле: плотностью, потоками импульса и т.п. Эти уравнения записываются в виде:

Rik &minus.1
2
gikR =
8&pi.G
c4
Tik. &emsp.&emsp.&emsp. (9)

Здесь Rik — так называемый тензор Риччи, выражающийся через gik, его первые и вторые производные по координатам. R = Rik g ik (величины g ik определяются из уравнений gikg km = &delta.mi, где &delta.mi — Кронекера символ).
Tik — так называемый тензор энергии-импульса материи, компоненты которого выражаются через плотность, потоки импульса и др. величины, характеризующие материю и её движение (под физической материей подразумеваются обычное вещество, электромагнитное поле, все др. физические поля).
Вскоре после создания общей теории относительности Эйнштейн показал (1917), что существует возможность изменения уравнений (9) с сохранением основных принципов новой теории. Это изменение состоит в добавлении к правой части уравнений (9) так называемого
«космологического члена»: &Lambda.gik. Постоянная &Lambda., называется «космологической постоянной», имеет размерность см&minus.2. Целью этого усложнения теории была попытка Эйнштейна построить модель Вселенной, которая не изменяется со временем (см. Космология). Космологический член можно рассматривать как величину, описывающую плотность энергии и давление (или натяжение) вакуума. Однако вскоре (в 20-х гг.) советский математик А. А. Фридман показал, что уравнения Эйнштейна без
&Lambda.-члена приводят к эволюционирующей модели Вселенной, а американский астроном Э. Хаббл открыл (1929) закон так называемого красного смещения для галактик, которое было истолковано как подтверждение эволюционной модели Вселенной. Идея Эйнштейна о статической Вселенной оказалась неверной, и хотя уравнения с
&Lambda.-членом тоже допускают нестационарные решения для модели Вселенной, необходимость в &Lambda.-члене отпала. После этого Эйнштейн пришёл к выводу, что введение &Lambda.-члена в уравнения Т. не нужно (то есть что &Lambda. = 0). Не все физики согласны с этим заключением Эйнштейна. Но следует подчеркнуть, что пока нет никаких серьёзных наблюдательных, экспериментальных или теоретических оснований считать
&Lambda. отличным от нуля. Во всяком случае, если &Lambda. &ne. 0, то, согласно астрофизическим наблюдениям, его абсолютная величина чрезвычайно мала: |&Lambda.| < 10&minus.55 см&minus.2. Он может играть роль только в космологии и практически совершенно не сказывается во всех др. задачах теории Т. Везде в дальнейшем будет положено
&Lambda. = 0.
Внешне уравнения (9) подобны уравнению (4) для ньютоновского потенциала. В обоих случаях слева стоят величины, характеризующие поле, а справа — величины, характеризующие материю, создающую поле. Однако уравнения (9) имеют ряд существенных особенностей. Уравнение (4) линейно и поэтому удовлетворяет принципу суперпозиции. Оно позволяет вычислить гравитационный потенциал
&phi. для любого распределения произвольно движущихся масс. Ньютоновское поле Т. не зависит от движения масс, поэтому уравнение (4) само не определяет непосредственно их движение. Движение масс определяется из второго закона механики Ньютона (6). Иная ситуация в теории Эйнштейна. Уравнения (9) не линейны, не удовлетворяют принципу суперпозиции. В теории Эйнштейна нельзя произвольным образом задать правую часть уравнений (Tik), зависящую от движения материи, а затем вычислить гравитационное поле gik. Решение уравнений Эйнштейна приводит к совместному определению и движения материи, создающей поле, и к вычислению самого поля. Существенно при этом, что уравнения поля Т. содержат в себе и уравнения движения масс в поле Т. С физической точки зрения это соответствует тому, что в теории Эйнштейна материя создаёт искривление пространства-времени, а это искривление, в свою очередь, влияет на движение материи, создающей искривление. Разумеется, для решения уравнений Эйнштейна необходимо знать характеристики материи, которые не зависят от гравитационных сил. Так, например, в случае идеального газа надо знать уравнение состояния вещества — связь между давлением и плотностью.
В случае слабых гравитационных полей метрика пространства-времени мало отличается от евклидовой и уравнения Эйнштейна приближённо переходят в уравнения (4) и (6) теории Ньютона (если рассматриваются движения, медленные по сравнению со скоростью света, и расстояния от источника поля много меньше, чем &lambda. = c&tau., где &tau. — характерное время изменения положения тел в источнике поля).
В этом случае можно ограничиться вычислением малых поправок к уравнениям Ньютона. Эффекты, соответствующие этим поправкам, позволяют экспериментально проверить теорию Эйнштейна (см. ниже). Особенно существенны эффекты теории Эйнштейна в сильных гравитационных полях.
Некоторые выводы теории тяготения Эйнштейна
Ряд выводов теории Эйнштейна качественно отличается от выводов ньютоновской теории Т. Важнейшие из них связаны с возникновением «чёрных дыр», сингулярностей пространства-времени (мест, где формально, согласно теории, обрывается существование частиц и полей в обычной, известной нам форме) и существованием гравитационных волн.
Чёрные дыры. Согласно теории Эйнштейна, Вторая космическая скорость в сферическом поле Т. в пустоте выражается той же формулой, что и в теории Ньютона:

v2 =
&radic.
2Gm
r
. &emsp.&emsp.&emsp. (10)

Следовательно, если тело массы m сожмётся до линейных размеров, меньших величины r =2 Gm/cІ, называемой гравитационным радиусом, то поле Т. становится настолько сильным, что даже свет не может уйти от него на бесконечность, к далёкому наблюдателю. для этого потребовалась бы скорость больше световой. Такие объекты получили название чёрных дыр. Внешний наблюдатель никогда не получит никакой информации из области внутри сферы радиуса r = 2Gm/сІ. При сжатии вращающегося тела поле Т., согласно теории Эйнштейна, отличается от поля не вращающегося тела, но вывод об образовании чёрной дыры остаётся в силе.
В области размером меньше гравитационного радиуса никакие силы не могут удержать тело от дальнейшего сжатия. Процесс сжатия называется коллапсом гравитационным. При этом растет поле Т. — увеличивается искривлённость пространства-времени. Доказано, что в результате гравитационного коллапса неизбежно возникает сингулярность пространства-времени, связанная, по-видимому, с возникновением его бесконечной искривлённости. (Об ограниченности применимости теории Эйнштейна в таких условиях см. следующий раздел.) Теоретическая астрофизика предсказывает возникновение чёрных дыр в конце эволюции массивных звёзд (см. Релятивистская астрофизика). возможно существование во Вселенной чёрных дыр и др. происхождения. Чёрные дыры, по-видимому, открыты в составе некоторых двойных звёздных систем.
Гравитационные волны. Теория Эйнштейна предсказывает, что тела, движущиеся с переменным ускорением, будут излучать гравитационные волны. Гравитационные волны являются распространяющимися со скоростью света переменными полями приливных гравитационных сил. Такая волна, падая, например, на пробные частицы, расположенные перпендикулярно направлению её распространения, вызывает периодические изменения расстояния между частицами. Однако даже в случае гигантских систем небесных тел излучение гравитационных волн и уносимая ими энергия ничтожны. Так, мощность излучения за счёт движения планет Солнечной системы составляет около 1011 эрг/сек, что в 1022 раз меньше светового излучения Солнца. Столь же слабо гравитационные волны взаимодействуют с обычной материей. Этим объясняется, что гравитационные волны до сих пор не открыты экспериментально.
Квантовые эффекты. Ограничения применимости теории тяготения Эйнштейна
Теория Эйнштейна — не квантовая теория. В этом отношении она подобна классической электродинамике Максвелла. Однако наиболее общие рассуждения показывают, что гравитационное поле должно подчиняться квантовым законам точно так же, как и электромагнитное поле. В противном случае возникли бы противоречия с принципом неопределённости для электронов, фотонов и т.д. Применение квантовой теории к гравитации показывает, что гравитационные волны можно рассматривать как поток квантов —
«гравитонов», которые так же реальны, как и кванты электромагнитного поля — фотоны. Гравитоны представляют собой нейтральные частицы с нулевой массой покоя и со спином, равным 2 (в единицах Планка постоянной &eta.).
В подавляющем большинстве мыслимых процессов во Вселенной и в лабораторных условиях квантовые эффекты гравитации чрезвычайно слабы, и можно пользоваться не квантовой теорией Эйнштейна. Однако квантовые эффекты должны стать весьма существенными вблизи сингулярностей поля Т., где искривления пространства-времени очень велики. Теория размерностей указывает, что квантовые эффекты в гравитации становятся определяющими, когда радиус кривизны пространства-времени (расстояние, на котором проявляются существенные отклонения от геометрии Евклида: чем меньше этот радиус, тем больше кривизна) становится равным величине rпл = &radic.(G&#x127./cі). Расстояние rпл называется планковской длиной. оно ничтожно мало: rпл = 10&minus.33 см. В таких условиях теория тяготения Эйнштейна неприменима.
Сингулярные состояния возникают в ходе гравитационного коллапса. сингулярность в прошлом была в расширяющейся Вселенной (см. Космология). Последовательной квантовой теории Т., применимой и в сингулярных состояниях, пока не существует.
Квантовые эффекты приводят к рождению частиц в поле Т. чёрных дыр. Для чёрных дыр, возникающих из звёзд и имеющих массу, сравнимую с солнечной, эти эффекты пренебрежимо малы. Однако они могут быть важны для чёрных дыр малой массы (меньше 1015 г), которые в принципе могли возникать на ранних этапах расширения Вселенной (см. «Чёрная дыра»).
Экспериментальная проверка теории Эйнштейна
В основе теории тяготения Эйнштейна лежит принцип эквивалентности. Его проверка с возможно большей точностью является важнейшей экспериментальной задачей. Согласно принципу эквивалентности, все тела независимо от их состава и массы, все виды материи должны падать в поле Т. с одним и тем же ускорением. Справедливость этого утверждения, как уже говорилось, была впервые установлена Галилеем. Венгерский физик Л. Этвеш с помощью крутильных весов доказал справедливость принципа эквивалентности с точностью до 10&minus.8. американский физик Р. Дикке с сотрудниками довёл точность до 10&minus.10, а советский физик В. Б. Брагинский с сотрудниками — до 10&minus.12.
Др. проверкой принципа эквивалентности является вывод об изменении частоты &nu. света при его распространении в гравитационном поле. Теория предсказывает (см. Красное смещение) изменение частоты &Delta.&nu. при распространении между точками с разностью гравитационных потенциалов
&phi.1 &minus. &phi.2:

&Delta.&nu.
&nu.
=
&phi.1 &minus. &phi.2
c2
. &emsp.&emsp.&emsp. (11)

Эксперименты в лаборатории подтвердили эту формулу с точностью по крайней мере до 1% (см. Мёссбауэра эффект).
Кроме этих экспериментов по проверке основ теории, существует ряд опытных проверок её выводов. Теория предсказывает искривление луча света при прохождении вблизи тяжёлой массы. Аналогичное отклонение следует и из ньютоновской теории Т., однако теория Эйнштейна предсказывает вдвое больший эффект. Многочисленные наблюдения этого эффекта при прохождении света от звёзд вблизи Солнца (во время полных солнечных затмений) подтвердили предсказание теории Эйнштейна (отклонение на 1,75 &rsquo.&rsquo. у края солнечного диска)
с точностью около 20%. Гораздо большая точность была достигнута с помощью современной техники наблюдения внеземных точечных радиоисточников. Этим методом предсказание теории подтверждено с точностью (на 1974) не меньшей 6%.
Др. эффектом, тесно связанным с предыдущим, является большая длительность времени распространения света в поле Т., чем это дают формулы без учёта эффектов теории Эйнштейна. Для луча, проходящего вблизи Солнца, эта дополнительная задержка составляет около 2·10&minus.4 сек.
Эксперименты проводились с помощью радиолокации планет Меркурий и Венера во время их прохождения за диском Солнца, а также с помощью ретрансляции радиолокационных сигналов космическими кораблями. Предсказания теории подтверждены (на 1974) с точностью 2%.
Наконец, ещё одним эффектом является предсказываемый теорией Эйнштейна медленный дополнительный (не объясняемый гравитационными возмущениями со стороны др. планет Солнечной системы) поворот эллиптических орбит планет, движущихся вокруг Солнца. Наибольшую величину этот эффект имеет для орбиты Меркурия — 43
&rsquo.&rsquo. в столетие. Это предсказание подтверждено экспериментально, согласно современным данным, с точностью до 1%.
Таким образом, все имеющиеся экспериментальные данные подтверждают правильность как положений, лежащих в основе теории тяготения Эйнштейна, так и её наблюдательных предсказаний.
Следует подчеркнуть, что эксперименты свидетельствуют против попыток построить др. теории Т., отличные от теории Эйнштейна.
В заключение отметим, что косвенным подтверждением теории тяготения Эйнштейна является наблюдаемое расширение Вселенной, теоретически предсказанное на основе общей теории относительности советским математиком А. А. Фридманом в середине 20-х гг. нашего столетия.
Лит.: Эйнштейн А., Собр. научных трудов, т. 1-4, М., 1965-67. Ландау Л., Лифшиц Е., Теория поля, 6 изд., М., 1973. Фок В. А., Теория пространства, времени и тяготения, 2 изд., М., 1961. Зельдович Я. Б., Новиков И. Д., Теория тяготения и эволюция звёзд, М., 1971. Брумберг В. А., Релятивистская небесная механика, М., 1972. Брагинский В. Б., Руденко В. Н., Релятивистские гравитационные эксперименты,
«Успехи физических наук», 1970, т. 100, в. 3, с. 395.
И. Д. Новиков.



Рубрики Т